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Abstract. A general spinor interaction with gravitation which includes both Einstein’s and 
Cartan’s theories as special cases is discussed. The coupling of torsion to matter field in the 
new theory has an arbitrary strength which can only be determined by experiment. 

Soon after Einstein proposed his theory of gravitation based on Riemannian metric of 
space-time Cartan (1922, 1923, 1924) suggested a generalisation of the theory to 
include torsion as well by noticing that the tangent space of each space-time point 
admits not just Lorentz group but the full Poincart group as its symmetry. Thus in 
Cartan’s geometry a vector, after Cartan displacement along a closed path made of a 
basis ei and ej, gets not only rotated but also translated 

(1) ~ , . e  = R . .  ‘e - ~ . i e  II k i lk I II I 

where Riikl and Ti: are the curvature and the torsion tensors repectively. This way the 
geometry exhibits the full local Poincart invariance rather than just Lorentz group as 
the holonomy group. 

Cartan’s idea was revived by Weyl(1950), and made more precise as a gauge theory 
of PoincarC group by Kibble (1961) and Sciama (1962). In the gauge formalism of 
Cartan’s theory the gauge potentials of the translational and Lorentz subgroups play the 
role of the vierbein and the affine connection respectively (Cho 1976a, Hey1 er a1 1976 
and references therein). The difference between Cartan’s and Einstein’s theories is of 
course that the former has a spin-spin contact interaction whose coupling strength is 
uniquely fixed in terms of the gravitational constant, whereas the latter simply does not 
have that coupling. In this note, however, we would like to show that there exists a more 
general theory which allows an arbitrary coupling strength for the spin-spin interaction 
and thus yields both Einstein’s and Cartan’s theories as special cases of the general 
theory. 

Let us start from Cartan’s theory. In a local orthogonal frame a, :/: satisfying 

[a i ,  a i l  = f i lk a k  

the theory may be described by the Lagrangian 

= (-g)1’2[$($y’Di+ - Z+yi+) - m&+ + (1 / K  ’)R,“ J 

s. = - I [  

where Di is the covariant derivative of the Lorentz gauge group 

D~ = ai + t c / k s j k  ; Ik 4 yij Y k I ,  

t Research supported in part by the National Science Foundation under Grant PHY74-22218A01. 
:i: For the notation see Cho (19766). 

0305-4770/78/0012-2385$01.00 @ 1978 The Institute of Physics 2385 



2386 Y M Cho 

C / k  = -Ciki being the gauge potentials, and 

~ ~ , k l  = aicFl - a,clkl + c ~ ~ ~ c ; ~  - cFmcilm -fiimcmkl (5  1 
its field strength. Note that the field C,’k is not dynamically independent and can be 
replaced by 

c,. ilk = c!?’ i lk + CW i lk (6 ) 

where 
c(!’=’ 2 - 1 5 C$k‘ = $ ( f i j k  - f i k ,  - f i k i )  i lk  8 K  Eijkl$Y y 

The fields Ci:k‘ are called the contortion tensors. Using equation (6), the Lagrangian ( 3 )  
can be rewritten in terms of dynamically independent variables alone: 

where RE is the Einstein curvature i.e. the scalar curvature obtained by the metric 
alone. The repulsive spin-spin interaction term is of course the characteristic of 
Cartan’s theory which is absent in Einstein’s theory. 

Now we will generalise the theory further so that one can have an arbitrary coupling 
strength for the spin-spin interaction. To do  this it is crucial to realise that under a local 
Lorentz transformation both f i , k  and the gauge potential Cl,k transform inhomo- 
geneously, but the torsion Tllk given by 

r , k  = Cijk - c j i k  - f i l k  (7 ) 

transforms homogeneously. Thus the Lagrangian 

2‘= (-g)’/2[$i($y’L+,b -T$y‘$)-m$* + ( ( U / ~ ) E ” ~ ‘ T ~ , ~ $ ~ I Y S ~  + ( ~ / K ’ ) R , , ’ ’ ]  ( 8 )  

is local Lorentz invariant (and thus generally invariant) independent of the scalar 
parameter cy that determines the coupling strength of torsion to the matter field. 
Clearly from the Lagrangian ( 8 )  one has 

Cjlk = c rpd + c i;2 (9 ) 

Now one immediately notices that the theory reduces to Einstein’s when cy = 1 and to 
Cartan’s when cy = 0. Thus the spinor interaction with gravitation admits a more 
general coupling described by the Lagrangian ( 8 )  which yields both Einstein’s and 
Cartan’s theories as special cases. Remember that in Cartan’s theory only the affine 
connection (or equivalently the gauge potentials of the Lorentz group) coupled to the 
matter field. However, we would like to emphasise that there is no a priori reason why 
torsion itself should not couple to the matter field directly. In some sense in a 
space-time with torsion, it would be more natural to expect a direct coupling between 
torsion and matter field. Indeed, as we have seen torsion does have a direct coupling to 
matter field in the gauge formalism of Einstein’s theory with the unique strength (i.e. 
with cy = 1 ) .  The fact that the geometry allows the additional coupling constant comes 
from the fact that the PoincarC group which is the holomony group of the geometry has 
two Casimir invariants, mass and spin angular momentum. Clearly the new parameter 
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cy determines the coupling strerrgth of the torsion to the spin density whereas the old 
Newton’s constant has to d o  with the mass density of the source field. In this respect the 
theory is indeed a natural generalisation of Einstein’s theory. 

A t  this point one might wonder whether the arbitrary parameter could be related to  
the coupling constant of the Lorentz gauge group. However, that cannot be the case 
since one  can easily show (Cho 1976b) that the gauge formalism of Cartan’s theory does 
not admit an arbitrary coupling for the gauge group other than the gravitational 
constant. 

It has been speculated by Trautman (1973) that the repulsive spin-spin interaction 
in Cartan’s theory might prevent singularities of Einstein’s theory?. The  nature of the 
interaction in our  theory can easily be figured out. Substituting equation (9) into the 
Lagrangian (7) one  obtains 

3 = (-g)1’2[(i/2)(d~ w -a&’+)- mdG 

I lk d Y l Y 5 4 + & K 2 ( 1  - c y ) 2 ( d Y ’ Y S ~ ) 2 + K - 2 R E ] .  (7’) 

Thus the spin-spin interaction remains to be repulsive, but the coupling strength is left 
arbitrary. This means that the size of the contracted universe will now depend on cy. In 
particular it can be pointlike (yielding the singularity) in the Einstein limit. The  
arbitrary coupling strength of the torsion to matter field in our  theory must be compared 
to the gravitational constant that determines the coupling strength of the metric to 
matter field, both of which could only be determined by experiment. 

Finally we observe that although in the above example the simplest spinor matter 
field is considered it becomes clear how one  can generalise the theory in the presence of 
an arbitrary source field: simply add the lowest order possible or  the ‘minimal’ coupling 
of torsion to  the spin density of the source field with an arbitrary strength:::. In view of 
the recent revived interest in the theory of gravitation with torsion in connection with 
supergravity, the new degree of freedom of the theory seems worth studying and might 
be relevant, for instance, to improve the renormalisability of the theory. The  detailed 
dynamical properties of the theory will be discussed elsewhere. 
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